Very large language models such as GPT-3 have shown impressive performance across a wide variety of tasks, including text summarization. In this paper, we show that this strong performance extends to opinion summarization. We explore several pipeline methods for applying GPT-3 to summarize a large collection of user reviews in a zero-shot fashion, notably approaches based on recursive summarization and selecting salient content to summarize through supervised clustering or extraction. On two datasets, an aspect-oriented summarization dataset of hotel reviews and a generic summarization dataset of Amazon and Yelp reviews, we show that the GPT-3 models achieve very strong performance in human evaluation. We argue that standard evaluation metrics do not reflect this, and evaluate against several new measures targeting faithfulness, factuality, and genericity to contrast these different methods.
translated by 谷歌翻译
This paper presents SVAM (Sequential Variance-Altered MLE), a unified framework for learning generalized linear models under adversarial label corruption in training data. SVAM extends to tasks such as least squares regression, logistic regression, and gamma regression, whereas many existing works on learning with label corruptions focus only on least squares regression. SVAM is based on a novel variance reduction technique that may be of independent interest and works by iteratively solving weighted MLEs over variance-altered versions of the GLM objective. SVAM offers provable model recovery guarantees superior to the state-of-the-art for robust regression even when a constant fraction of training labels are adversarially corrupted. SVAM also empirically outperforms several existing problem-specific techniques for robust regression and classification. Code for SVAM is available at https://github.com/purushottamkar/svam/
translated by 谷歌翻译
We apply reinforcement learning (RL) to robotics. One of the drawbacks of traditional RL algorithms has been their poor sample efficiency. One approach to improve it is model-based RL. We learn a model of the environment, essentially its dynamics and reward function, use it to generate imaginary trajectories and backpropagate through them to update the policy, exploiting the differentiability of the model. Intuitively, learning more accurate models should lead to better performance. Recently, there has been growing interest in developing better deep neural network based dynamics models for physical systems, through better inductive biases. We focus on robotic systems undergoing rigid body motion. We compare two versions of our model-based RL algorithm, one which uses a standard deep neural network based dynamics model and the other which uses a much more accurate, physics-informed neural network based dynamics model. We show that, in environments that are not sensitive to initial conditions, model accuracy matters only to some extent, as numerical errors accumulate slowly. In these environments, both versions achieve similar average-return, while the physics-informed version achieves better sample efficiency. We show that, in environments that are sensitive to initial conditions, model accuracy matters a lot, as numerical errors accumulate fast. In these environments, the physics-informed version achieves significantly better average-return and sample efficiency. We show that, in challenging environments, where we need a lot of samples to learn, physics-informed model-based RL can achieve better asymptotic performance than model-free RL, by generating accurate imaginary data, which allows it to perform many more policy updates. In these environments, our physics-informed model-based RL approach achieves better average-return than Soft Actor-Critic, a SOTA model-free RL algorithm.
translated by 谷歌翻译
The data used to train deep neural network (DNN) models in applications such as healthcare and finance typically contain sensitive information. A DNN model may suffer from overfitting. Overfitted models have been shown to be susceptible to query-based attacks such as membership inference attacks (MIAs). MIAs aim to determine whether a sample belongs to the dataset used to train a classifier (members) or not (nonmembers). Recently, a new class of label based MIAs (LAB MIAs) was proposed, where an adversary was only required to have knowledge of predicted labels of samples. Developing a defense against an adversary carrying out a LAB MIA on DNN models that cannot be retrained remains an open problem. We present LDL, a light weight defense against LAB MIAs. LDL works by constructing a high-dimensional sphere around queried samples such that the model decision is unchanged for (noisy) variants of the sample within the sphere. This sphere of label-invariance creates ambiguity and prevents a querying adversary from correctly determining whether a sample is a member or a nonmember. We analytically characterize the success rate of an adversary carrying out a LAB MIA when LDL is deployed, and show that the formulation is consistent with experimental observations. We evaluate LDL on seven datasets -- CIFAR-10, CIFAR-100, GTSRB, Face, Purchase, Location, and Texas -- with varying sizes of training data. All of these datasets have been used by SOTA LAB MIAs. Our experiments demonstrate that LDL reduces the success rate of an adversary carrying out a LAB MIA in each case. We empirically compare LDL with defenses against LAB MIAs that require retraining of DNN models, and show that LDL performs favorably despite not needing to retrain the DNNs.
translated by 谷歌翻译
This paper provides an introductory survey to GPT-3. We cover some of the historical development behind this technology, some of the key features of GPT-3, and discuss the machine learning model and the datasets used. We survey both academic and commercial efforts applying GPT-3 in diverse domains such as developing conversational AI chatbots, software development, creative work, domain knowledge, and business productivity. We discuss some of the challenges that GPT-3 faces such as the problems of training complexity, bias, and hallucination/incorrect answers. We also discuss the future research opportunities in this area.
translated by 谷歌翻译
Automated Market Makers (AMMs) have cemented themselves as an integral part of the decentralized finance (DeFi) space. AMMs are a type of exchange that allows users to trade assets without the need for a centralized exchange. They form the foundation for numerous decentralized exchanges (DEXs), which help facilitate the quick and efficient exchange of on-chain tokens. All present-day popular DEXs are static protocols, with fixed parameters controlling the fee and the curvature - they suffer from invariance and cannot adapt to quickly changing market conditions. This characteristic may cause traders to stay away during high slippage conditions brought about by intractable market movements. We propose an RL framework to optimize the fees collected on an AMM protocol. In particular, we develop a Q-Learning Agent for Market Making Protocols (QLAMMP) that learns the optimal fee rates and leverage coefficients for a given AMM protocol and maximizes the expected fee collected under a range of different market conditions. We show that QLAMMP is consistently able to outperform its static counterparts under all the simulated test conditions.
translated by 谷歌翻译
A central problem in computational biophysics is protein structure prediction, i.e., finding the optimal folding of a given amino acid sequence. This problem has been studied in a classical abstract model, the HP model, where the protein is modeled as a sequence of H (hydrophobic) and P (polar) amino acids on a lattice. The objective is to find conformations maximizing H-H contacts. It is known that even in this reduced setting, the problem is intractable (NP-hard). In this work, we apply deep reinforcement learning (DRL) to the two-dimensional HP model. We can obtain the conformations of best known energies for benchmark HP sequences with lengths from 20 to 50. Our DRL is based on a deep Q-network (DQN). We find that a DQN based on long short-term memory (LSTM) architecture greatly enhances the RL learning ability and significantly improves the search process. DRL can sample the state space efficiently, without the need of manual heuristics. Experimentally we show that it can find multiple distinct best-known solutions per trial. This study demonstrates the effectiveness of deep reinforcement learning in the HP model for protein folding.
translated by 谷歌翻译
Practical operations of coordinated fleets of mobile robots in different environments reveal benefits of maintaining small distances between robots as they move at higher speeds. This is counter-intuitive in that as speed increases, increased distances would give robots a larger time to respond to sudden motion variations in surrounding robots. However, there is a desire to have lower inter-robot distances in examples like autonomous trucks on highways to optimize energy by vehicle drafting or smaller robots in cluttered environments to maintain communication, etc. This work introduces a model based control framework that directly takes non-linear system dynamics into account. Each robot is able to follow closer at high speeds because it makes predictions on the state information from its adjacent robots and biases it's response by anticipating adjacent robots' motion. In contrast to existing controllers, our non-linear model based predictive decentralized controller is able to achieve lower inter-robot distances at higher speeds. We demonstrate the success of our approach through simulated and hardware results on mobile ground robots.
translated by 谷歌翻译
Machine learning and deep learning-based decision making has become part of today's software. The goal of this work is to ensure that machine learning and deep learning-based systems are as trusted as traditional software. Traditional software is made dependable by following rigorous practice like static analysis, testing, debugging, verifying, and repairing throughout the development and maintenance life-cycle. Similarly for machine learning systems, we need to keep these models up to date so that their performance is not compromised. For this, current systems rely on scheduled re-training of these models as new data kicks in. In this work, we propose to measure the data drift that takes place when new data kicks in so that one can adaptively re-train the models whenever re-training is actually required irrespective of schedules. In addition to that, we generate various explanations at sentence level and dataset level to capture why a given payload text has drifted.
translated by 谷歌翻译
Federated learning provides an effective paradigm to jointly optimize a model benefited from rich distributed data while protecting data privacy. Nonetheless, the heterogeneity nature of distributed data makes it challenging to define and ensure fairness among local agents. For instance, it is intuitively "unfair" for agents with data of high quality to sacrifice their performance due to other agents with low quality data. Currently popular egalitarian and weighted equity-based fairness measures suffer from the aforementioned pitfall. In this work, we aim to formally represent this problem and address these fairness issues using concepts from co-operative game theory and social choice theory. We model the task of learning a shared predictor in the federated setting as a fair public decision making problem, and then define the notion of core-stable fairness: Given $N$ agents, there is no subset of agents $S$ that can benefit significantly by forming a coalition among themselves based on their utilities $U_N$ and $U_S$ (i.e., $\frac{|S|}{N} U_S \geq U_N$). Core-stable predictors are robust to low quality local data from some agents, and additionally they satisfy Proportionality and Pareto-optimality, two well sought-after fairness and efficiency notions within social choice. We then propose an efficient federated learning protocol CoreFed to optimize a core stable predictor. CoreFed determines a core-stable predictor when the loss functions of the agents are convex. CoreFed also determines approximate core-stable predictors when the loss functions are not convex, like smooth neural networks. We further show the existence of core-stable predictors in more general settings using Kakutani's fixed point theorem. Finally, we empirically validate our analysis on two real-world datasets, and we show that CoreFed achieves higher core-stability fairness than FedAvg while having similar accuracy.
translated by 谷歌翻译